Skip to content Skip to navigation

Bir Kuantum Mekaniği Bilmecesi: Spin

Özgün Mustafa Özşimşek
13/07/2016 - 16:18

Kısaca tarihsel sürecine bakılırsa, spin olgusunun kendisini ilk olarak 1896 yılında (Anormal) Zeeman olayında gösterdiği ve ardından 1922 yılında Stern-Gerlach deneyinde fiziğin açıklanmaya muhtaç, temel problemlerinden biri haline geldiği görülür. Açıklama ise 1925 yılında, sonraları Pauli’nin spin adını verdiği kavramı fiziğe sokan Uhlenbeck ve Goudsmit’ten gelmiştir.

Klasik fizik çerçevesinde, herhangi bir geometrik cisim kendi ekseni etrafında döndürüldüğünde, bu cismin spini olduğu söylenir. Spine sahip cisimler eğer yüklülerse, mıknatıs davranışı gösterirler. Yani manyetik alana tepki verirler. En bilindik mıknatıs hiç kuşkusuz bir pusula iğnesidir. Pusula iğnesi Dünya'nın manyetik alanının etkisiyle sapar. Eğer çevresinde fazladan başka bir alan mevcutsa bu alandan da etkilenir.

Klasik fizikte durum böyle; sağduyuyla barışık ve günlük yaşamdan tanıdık. Ancak boyutlar küçülüp kuantum mekaniği devreye girdiği zaman işler değişiyor. Örneğin en iyi bilinen ve keşfedilen ilk parçacık olan elektronu ele alalım. Bu yüklü parçacık kendi ekseni etrafında dönerse ne olur? Yazının giriş kısmındaki bilgilerimiz ve tecrübelerimiz doğrultusunda aynı sonuçları bekleyebiliriz. Fakat durum çok farklıdır.

Elektron yüklüdür ve atomun yörüngelerinde mıknatıs özelliği de gösterdiği bilinir. Ancak bu özelliği gösterebilmesi için, Einstein’ın özel görelilik kuramını ihlal edecek şekilde, kendi ekseni etrafında ışık hızından hızlı dönmelidir! Ayrıca noktasal bir parçacık olduğundan (geometrik bir şekli bulunmadığından) klasik olarak dönme kavramı bu parçacık için geçerli değildir.

Bir cisim döndüğü zaman, açısal momentum denilen ve “dönme miktarının ölçüsü” olarak tanımlanan niceliğe sahip olur. Klasik fizikte bu herhangi bir değer alabilirken, kuantum fiziğinde sadece belli miktarlarda (kuantlarda) değerler alabilir. Bu noktada da klasik fizikle kuantum fiziğinin ayrıldığını görmek mümkün.

İşte Uhlenbeck ve Goudsmit bu noktada devreye girerek elektronun kuantumlanmış iç açısal momentum (spin) taşıdığı fikrini öne sürdüler ve yapılan deneyleri bu sayede açıkladılar. Bir elektronun dönmeden açısal momentum özelliği göstermesi(!) yani bir anlamda dönüyor olması çelişkili gözükse de model çalışır ve kafaları da bir hayli kurcalar. Spinin ciddi bir şekilde devreye girdiği bir başka nokta da göreli denklemlerdir. Kuantum mekaniğini göreli enerji-momentum bağıntısını sağlayacak şekilde genişletirsek (Dirac denklemi) karşımıza yine spin kavramı çıkıyor ve bu sefer de başka bir olayın sonucuymuş gibi görünüyor. O zaman şu soruyu soralım: Spin hangi etkinin sonucu ortaya çıkıyor? İki model de deneylerle doğrulanabiliyor, ancak iki sonucu birden içerecek bir açıklama bulunamıyor.

Tıbbi görüntülemede sıkça kullanılan tomografinin altında yatan fizik spine dayanıyor. Ayrıca yapı analizlerinde de sıkça başvurulan bir yöntem. Daha da fazlası kuantum bilgisayarlar teknolojisinin de spin kavramı üzerine inşa edilmesi durumu söz konusu. Bir adım ötesindeyse kütleçekiminin kuantum kuramı için ipuçları sunuyor.

Tam olarak sırrını çözemesek de spinden sıkça yararlanıyoruz. Bu kapsamda ünlü bilim felsefecisi Popper’i hatırlamakta fayda var. Popper bilimsel bilginin üretilmesi sürecinde üç dünya kavramından bahseder: Birinci dünya fiziksel nesnelerden ve olaylardan oluşur (mesela spin). İkinci dünya, bunu algılama biçimimizdir (açısal momentum vs.). Üçüncü dünya ise bu kavrayışımızın sonucu olarak ortaya çıkan nesnel eleştiriye, belki de daha doğru bir ifadeyle yanlışlamaya açık bilimsel kuramlardır.

Spinin doğasını hâlâ tam olarak bilmiyoruz, ancak Popper’in bilgi üretme sürecine paralel bir gelişimle bizi getirdiği yerde, nefes kesici teknolojilerin ve keşiflerin eşiğinde olduğumuzu söylemek mümkün.

İlgili İçerikler

Fizik

Bu yıl sekizincisi düzenlenen Breakthrough Ödülleri’nde temel fizik alanındaki ödülün sahibi ilk karadelik görüntüsünün elde edilmesi çalışmasını gerçekleştiren araştırmacılar oldu. Ödül kazanan araştırmacılar arasında Türk bilim insanı Prof. Dr. Feryal Özel de bulunuyor.

Fizik

Ay'a ulaşmamızı sağlayan en önemli teknolojilerden biri roketlerdi. Peki, roketler nasıl çalışıyor? Deneyler köşesinin bu etkinliğinde bir araba tasarlayarak Newton'un hareket yasalarını ve roketlerin çalışma prensibini öğreniyoruz.

Fizik

Söz konusu elektronlar, protonlar gibi “noktasal” parçacıklar olduğunda aynı işaretli elektrik yüklerinin birbirini ittiği, zıt işaretli elektrik yüklerinin birbirini çektiği bilinir. Ancak çok sayıda elektrik yüklü noktasal parçacığın bir araya gelmesiyle oluşan “bileşke” parçacıklarda durum farklıdır. 

Fizik

Danimarkalı gökbilimci Ole Christensen Romer, ışık hızını belirlemek için çalışmalar yapan ilk bilim insanlarından biridir. Romer, yaptığı uzun süreli gözlemler sonucunda Jüpiter’in uydularından Io’nun iki tutulması arasında geçen zamanlarda farklılıklar tespit etti.

Fizik

Bu etkinliğimizde yenilenebilir enerji kaynaklarından güneş enerjisinin farklı enerji türlerine dönüştüğünü gözlemleyebileceğimiz bir düzenek tasarlayacağız.

Fizik

James Watt’ın buhar motorunu keşfetmesi Sanayi Devrimi’nin başlangıcı olarak kabul edilir. James Watt, buhar motorunu madenlerde ortaya çıkan suyun dışarı pompalanması için etkili bir yöntem ararken geliştirdi. İlk yazımızda Arşimet, 12. yüzyılda yaşayan el-Cezeri ve 16. yüzyılda yaşayan Takiyüddin’in suyun yukarı taşınması için geliştirdikleri düzenekleri anlatmıştık.

Fizik

Uluslararası bir araştırma grubu, araçların arka kısımlarına hava püskürten cihazlar yerleştirerek hava sürtünmesini azaltmayı başardı. Dr. Ruiying Li ve arkadaşları tarafından yapılan araştırmanın sonuçları Physical Review Fluids’te yayımlandı.

Fizik

Bu etkinliğimizde maliyeti uygun malzemelerden güneş enerjisi ile çalışan bir yel değirmeni düzeneği tasarlayarak enerji dönüşümünü gözlemleyeceğiz.

Fizik

Zürih Federal Teknoloji Enstitüsü ve Zürih Üniversitesinde çalışan bir grup araştırmacı, aşırı derecede düşük sıcaklıklara soğutulduğunda bile suyun donmasını engelleyen bir yöntem geliştirdi. 

Fizik

Nano ölçekteki malzemelerin özelliklerinin anlaşılması için gerçekleştirdiği uluslararası düzeyde üstün nitelikli çalışmalarıyla 2018 yılı TÜBİTAK Teşvik Ödülü’ne layık görülen Doç. Dr. Hasan Şahin ile bir söyleşi gerçekleştirdik.