Skip to content Skip to navigation

DNA Origami

Dr. Öğr. Üyesi Ümit Hakan Yıldız
26/03/2018 - 16:45

Japon kâğıt katlama sanatı origami ile birbirinden farklı objeler tasarlamak mümkün. Peki aynı el sanatını kâğıt yerine DNA’yı (deoksiribonükleik asit) kullanarak gerçekleştirebilir miyiz?

İnsanoğlu uygarlığın başlangıcından itibaren çok büyük yapıların nasıl inşa edileceğini öğrendi. Yaklaşık kırk yıldır ise çok küçük yapıların nasıl üretilebileceği üzerinde çalışılıyor.

Kaliforniya Teknoloji Enstitüsü’nden (Caltech) Paul Rothemund ve bu alanda çalışan diğer bilim insanları nano ölçekte (metrenin milyarda biri) yapıların nasıl inşa edileceğine dair farklı yöntemler üzerinde çalışıyor. Nano ölçekteki DNA yapılarının kendiliğinden bir araya gelmesi ilkesine dayanan bu yenilikçi yaklaşım “küçük dünyalarda” “büyük işlerin” gerçekleştirilmesine imkân sağlayabilir.

Nature - Hadi bize gülümse! Soldaki görselde DNA’dan üretilen yapının bilgisayardaki tasarımı görülüyor. Sağdaki görselde DNA parçaları ile oluşturulan origami şekli görülüyor.

Canlıların genetik kodunu saklayan DNA, son yıllarda nano boyutta tasarım yapan araştırmacıların yararlandığı bir makromolekül. Bunun iki nedeni var: İlki DNA’nın çift sarmal şeklindeki yapısının keşfedilmesinden bu yana geçen 65 yılda DNA’nın kendine özgü üç boyutlu yapıya sahip olmasını sağlayan mekanizmalar hakkında detaylı bilgiler elde edilmiş olması. Bu, bir DNA dizisinin katlanarak alabileceği şekillerin tahmin edilmesini sağladı.

DNA’nın birbirine sarmal şekilde bağlanmış iki zincirden oluştuğu 1953’te Prof. Dr. James Watson ve Prof. Dr. Francis Crick tarafından keşfedilmişti.

İkincisi ise DNA moleküllerinin hızlı, basit ve otonom bir şekilde sentezlenmesini sağlayan yöntemlerin geliştirilmesi. Bu sayede 100 ve daha fazla nükleotidden oluşan DNA molekülleri kolayca sentezlenebiliyor.

DNA, nükleotid olarak isimlendirilen molekül birimlerinin birbirine bağlanması sonucu oluşur.

DNA molekülünden nano boyutta yapılar tasarlamak için kullanılan yöntemlerden biri New York Üniversitesi’nden Prof. Dr. Nadrian C. Seeman tarafından geliştirilen "döşeme modeli". Bu yöntem farklı şekillerdeki (örneğin kare, dikdörtgen) kilitli taşların bir araya gelmesiyle oluşan kaldırım döşemelerine benzetilebilir.

Bu yöntemde iki boyutlu, dikdörtgen şekilli DNA blokları yapı taşı olarak kullanılır. DNA çift sarmalının ucunda kısa tek zincirli bölümler bulunur. Bunlar “yapışkan uçlar” olarak isimlendirilir. İki farklı DNA bloğunun yapışkan uçları -cırt cırtlı bantların yapışarak birbirini tutmasına benzer şekilde- birleşerek daha büyük ve karmaşık şekilli yapılar oluşturabilir.

Scripps Araştırma Enstitüsü’nden Prof. Dr. William M. Shih ve arkadaşları ise DNA molekülünü kullanarak nano boyutta yapılar oluşturmak için farklı bir yöntem kullandı. Geliştirilen yöntem sayesinde 1669 nükleotidden oluşan tekli DNA zinciri kendiliğinden katlanarak nano boyutta bir düzgün sekiz yüzlü oluşturdu. Ana DNA zincirinin üzerindeki belirli bölgelerdeki kısa DNA zincirleri molekülün istenilen şekilde kendiliğinden katlanmasını sağladı. Bu yöntem sayesinde DNA molekülleri kullanılarak üç boyutlu yapılar oluşturulabildi.

Kaliforniya Teknoloji Enstitüsü’nden (Caltech) Paul Rothemund bu iki yöntemi birleştirerek istenilen şekilde iki boyutlu DNA yapılar oluşturulmasına imkân veren yeni bir yöntem geliştirdi.

 

Bu yöntem farklı aşamalardan oluşur:

  • İlk adımda tasarlanacak şekil (örneğin yuvarlak bir gülen yüz) seçilir.
  • Daha sonra dikdörtgen şeklindeki DNA bloklarıyla belirlenen şekil oluşturulur.
  • Sonraki aşamada uzun tekli bir DNA zinciri ikili sarmal yapıdaki DNA bloklarının üzerinden ileri ve geri katlanarak ilerler. Bu sırada DNA zincirleri arasında bağlantılar kurulur.
  • Kısa DNA zincirleri kullanılarak, katlanan DNA zinciri sabitlenir.

 

Nature - Paul Rothemund bu yöntemi kullanarak beş köşeli yıldız, gülen yüz gibi altı farklı şekil oluşturdu.

DNA temelli nano ölçekteki yapıların tasarımı ve üretimi ile bu malzemelerin yapısal ve kimyasal özelliklerinin anlaşılması sayesinde gelecekte çok farklı alanlarda kullanılabilecek daha küçük yapılar ve cihazlar geliştirmek mümkün olabilir.

 

Kaynaklar:

 

Yazar Hakkında:
Dr. Öğr. Üyesi Ümit Hakan Yıldız
İzmir Yüksek Teknoloji Enstitüsü Kimya Bölümü
 

İlgili İçerikler

Biyoloji

Bilim insanları, kuşların gagalarındaki bazı hücrelerin pusula işlevi gördüğünü ve bu durumun kuşların uzun ve karmaşık rotalarda yaptıkları yolculuklarda yön bulmalarına yardımcı olduğunu düşünüyordu. Fakat yakın zamanda yapılan bir araştırma, kuşların yönlerini kolaylıkla bulabilmesini sağlayan şeyin gözlerinde bulunan bir protein olduğunu gösterdi.

Biyoloji

ABD’deki Utah Sağlık Üniversitesinde çalışan bir grup araştırmacının yaptığı çalışmalar, Clostridia (20-30 ayrı bakteriyi içine alan bir sınıf) ba

Biyoloji

Dünyanın birçok yerinde bulunan kırlangıçkuyruklar yaklaşık 560 türe sahip bir kelebek ailesidir. İsimlerini, bazı türlerin kanatlarının altındaki kuyruğa benzer uzantılardan alırlar. Çoğunlukla tropik bölgelerde yaşarlar.

Biyoloji

Nanomalzemelere dayalı elektrokimyasal biyosensörler ve aptasensör teknolojilerinin geliştirilmesine yönelik çalışmaları nedeniyle 2015 yılında TÜBİTAK Bilim Ödülü’ne layık görülen Prof. Dr. K. Arzum Erdem Gürsan ile bir söyleşi gerçekleştirdik.

Biyoloji

Semenderlerin bacakları koptuğunda yeniden gelişir. Kertenkeleler düşmanlarını yanıltmak için kuyruklarını bırakır, daha sonra yeniden büyütür. Planarya solucanları, denizanaları ve denizşakayıkları ise bütün vücutlarını yeniden büyütebilir. 

Biyoloji

İnsan Genom Projesi ile insanların gen haritasının çıkarılması pek çok gelişmeye kapı araladı. Bunlardan biri de genetik testler. Genetik testler kan, tükürük gibi vücut sıvılarındaki hücrelerden elde edilen DNA’nın incelenmesine dayanıyor.

Biyoloji

Dünyada bilinen örümcek türlerinin sayısı 43.000’den fazladır. Bu örümcek türlerinin birçoğu zehirli olmasına rağmen zehirleri insanı öldürücü nitelikte değildir. Fakat 30 kadar türün zehrinin insanlar için tehlikeli olabileceği düşünülüyor.

Biyoloji

İnsan genomunun sadece %2’lik kısmı protein kodlar. Kodlamayan DNA ise geriye kalan %98’lik kısmı ifade etmek için kullanılan terimdir. Bir grup araştırmacının yaptığı çalışmalar, kodlamayan DNA’daki mutasyonların otizme yol açabileceğini gösteriyor.

Biyoloji

Bilkent Üniversitesi Malzeme Bilimi ve Nanoteknoloji Araştırma Enstitüsü Öğretim Üyesi Doç. Dr. Urartu Özgür Şafak Şeker ile sentetik biyoloji ve genetiği değiştirilmiş biyosistemlerin oluşturulması amacıyla sürdürdüğü çalışmaları üzerine videolu bir söyleşi gerçekleştirdik.

Biyoloji

Yapılan farklı araştırmalar karıncaların kendi vücut ağırlıklarının 10-50 kat fazlasını taşıyabildiklerini gösteriyor. Peki, karıncalar nasıl bu kadar kuvvetli olabiliyor?