Skip to content Skip to navigation

Kilogramın Tanımı Değişmek Üzere

Dr. Mahir E. Ocak
22/05/2018 - 14:00

Hem bilimsel çalışmalar hem de günlük hayattaki pek çok etkinlik için kendi içinde tutarlı ölçüm birimlerine ihtiyaç vardır. Günümüzde bu amaçla yaygın şekilde kısaca SI olarak adlandırılan Uluslararası Birim Sistemi (Système international d’unités) kullanılsa da henüz arzu edilen düzeye erişilebilmiş değil. Bu durumun en önemli sebebi hâlâ temel kütle biriminin hassas bir biçimde tanımlanamaması. Ancak yakın gelecekte bu durumun değişmesi için çalışmalar yapılıyor.

Sezyum atom saati

Geçmişten günümüze SI sisteminde pek çok değişiklik yaşandı. Yıllar içinde sistemin daha tutarlı bir hale gelmesi için temel birimlerin tanımları fiziksel dünyadan daha bağımsız, daha kararlı hale getirildi. Örneğin zaman birimi olan saniye tarihte çok farklı şekillerde tanımlandı. El-Biruni 1000 yılı civarında saniyeyi yılın belirli haftalarında iki yeniay arasında geçen zaman üzerinden tanımlamıştı. Marin Mersenne 1644 yılında 0,994 metre uzunluğundaki bir sarkacın salınım periyodunu 2 saniye olarak tanımladı. 1950’lere gelindiğindeyse SI sisteminde saniyenin tanımı şu şekildeydi: 1900 senesinde geçen zamanın 31.556.925,9747’de biri. Bu tanımların tamamındaki en önemli sorun farklı zamanlarda farklı kişiler tarafından yapılacak ölçümlerin birbiriyle uyuşmasının zorluğu. Örneğin Ay’ın Dünya etrafındaki dönüş periyodu ve Dünya’nın Güneş etrafındaki dönüş periyodu zaman içinde yavaş yavaş da olsa değişir. Mersenne’in tanımıysa uzunluğun hassas bir biçimde ölçülmesine dayanır. Dolayısıyla temel zaman biriminin bu şekilde tanımlanabilmesi için öncelikle çok hassas bir biçimde tanımlanabilen bir uzunluk ölçüsü olması gerekir. Ayrıca bir sarkacın salınım periyodu bulunduğu ortamdaki kütleçekim ivmesine bağlı olarak da değişir. Günümüzde saniye geçmiştekilere oranla çok daha kararlı bir biçimde şöyle tanımlanıyor: temel enerji düzeyindeki sezyum-133 atomunun aşırı ince seviyeleri arasındaki geçişler sırasında yayılan radyasyonun 9.192.631.770 kez salınması sırasında geçen zaman. Deniz seviyesindeki, 0 Kelvin sıcaklık altında bulunan, durağan bir sezyum atomu için yapılan bu tanımın en önemi özelliği, farklı zamanlarda farklı kişiler tarafından yapılacak ölçümlerin birbiriyle çok hassas bir biçimde uyuşmasına imkân vermesi. Bir atomdan yayılan radyasyonun salınım periyodu belirli koşullar altında her zaman aynıdır. Güncel tanıma göre çeşitli zamanlarda yapılacak ölçümler arasında bir fark görülmesine sebep olabilecek tek şey, kütleçekim alanında yaşanabilecek değişiklikler. Genel görelilik kuramı, kütleçekim alanının zamanın akış hızını etkilediğini söyler. Dolayısıyla Dünya’nın kütleçekim alanında yaşanacak değişiklikler zaman içinde saniyenin uzunluğunun değişmesine neden olabilir. Ancak hem kütleçekiminin zamanın akış hızına etkisi çok küçüktür hem de Dünya’nın kütlesi ve dolayısıyla kütleçekim alanı zamanla çok yavaş bir biçimde değişir. Bu yüzden her ne kadar daha hassas bir biçimde yeniden tanımlanması düşünülüyor olsa da temel zaman biriminin güncel tanımının çok hassas ve kararlı olduğunu söyleyebiliriz.

SI sistemindeki temel uzunluk birimi olan metrenin tanımı da zaman içinde pek çok kez değişti. Günümüzde metre şu şekilde tanımlanıyor: ışığın boşlukta hareket ederken 1/299.792.458 saniyede aldığı yol. Işığın boşluktaki hızı sabittir. Dolayısıyla güncel tanıma göre zamanın hassas bir biçimde ölçülmesi uzunluğun da hassas bir biçimde ölçülmesine imkân verir.

Büyük K

Temel kütle birimi olan kilogramsa metre ve saniyenin aksine hâlâ fiziksel bir nesne üzerinden tanımlanıyor. Golf topu büyüklüğünde, platin ve iridyumdan oluşan, 127 yaşındaki silindir biçimli bu nesne Paris’in dışında Ağırlıklar ve Ölçüler Uluslararası Bürosu’na ait özel bir mahzende tutuluyor. Büyük K (Le Grand K) olarak da adlandırılan temel ağırlık birimi o kadar önemli ki iç içe üç tane hava geçirmez cam kavanozun içinde, sabit sıcaklık altında kilitli tutuluyor. Çünkü toz, nem ya da başka etkenler silindirin kütlesinin değişmesine sebep olabilir. Dünya genelinde bir ağırlık standardı oluşturabilmek için Büyük K’nın çok sayıda kopyası yapılmış. Her 40 yılda bir Büyük K dikkatli bir biçimde saklandığı kavanozlardan çıkarılıyor ve kütlesi dünya genelindeki benzerleriyle karşılaştırılıyor. Ancak karşılaştırmalar sırasında gözlemlenen farkların Büyük K’dan mı yoksa kopyalarından mı kaynaklandığını söylemenin imkânı yok. En son yapılan 1996-1998 kalibrasyonlarında da görece büyük farklılıklar gözlemlendi.

Günümüzde pek çok teknoloji ve ticaret açısından kütlenin hassas bir biçimde ölçülmesi önemli olduğu için, onlarca yıldır bilim insanları temel kütle birimini doğada bulunan bir sabit üzerinden yeniden tanımlamak istiyor.

Yakın zamanlarda ABD’deki Standartlar ve Teknolojiler Ulusal Enstitüsü’nde çalışan fizikçi Prof. Dr. Stephan Schlamminger kilogramı Planck sabiti üzerinden yeniden tanımlamak için çalışmalar yaptıklarını açıkladı. Planck sabiti (h) fotonların (ışığın içerisindeki en küçük enerji paketleri) enerjileri (E) ile frekansları (ν) arasındaki sabit orandır: E=hν. Araştırmacılar, Einstein’ın ünlü E=mc2 formülünü kullanarak Planck sabitiyle kütle arasında ilişki kurmayı planlıyor. Planck sabitinin çok küçük bir hata payıyla ölçülmesi durumunda temel kütle birimi de çok küçük bir hata payıyla tanımlanabilir.

Max Planck

Prof. Dr. Schlamminger ve arkadaşları kütlesi bilinen bir cismi bir terazinin bir kısmına yerleştirmiş. Daha sonra bir manyetik alanın içinde hareket edebilen bir bobinin içinden elektrik akımı geçirerek teraziyi dengelemişler. Böylece elektromanyetik kuvvet üzerinden Planck sabitini milyarda otuz dört hata payıyla hesaplamışlar. Başka araştırma grupları da benzer çalışmalar yapmaya devam ediyor. Kasım 2018’de yapılacak Ağırlıklar ve Ölçüler Genel Konferansı’nda farklı araştırma gruplarının verileri gözden geçirilerek Planck sabitinin değeri üzerinde bir uzlaşmaya varılması planlanıyor. Eğer her şey arzu edildiği gibi sonuçlanırsa Büyük K da muhtemelen geçmişte standart olarak kullanılan eski metreler gibi Louvre Müzesi’ndeki yerini alacak.

 

Kaynak:

  • Sheikh, K., “The kilograms’s makeover is almost complete”, Scientific American, Eylül 2016.

İlgili İçerikler

Fizik

Arthur Ashkin optik cımbızların icadı, Gérard Mourou ve Donna Strickland ise yüksek yoğunluklu yüksek enerjili lazer atımlarının üretilmesine imkân veren bir yöntem geliştirmeleri sebebiyle Nobel Fizik Ödülü'ne layık görüldü.

Fizik

Deneyler köşesinin bu etkinliğinde yüzey gerilimi etkisiyle yüzen kâğıttan bir balık tasarlıyoruz.

Fizik

Fosil yakıtların alternatifi olabilecek yenilenebilir enerji kaynaklarının bulunmasına ve yaygınlaştırılmasına yönelik çabalar gün geçtikçe artıyor.

Fizik

Genel görelilik kuramı geliştirildiğinden beri pek çok testten başarıyla geçti. Astronomy & Astrophysics dergisinde yayımlanan bir makalede araştırmacılar, genel görelilik kuramının tahminleriyle uyumlu sonuçlar elde etti.

Fizik

Deneyler köşesinin bu etkinliğinde yoğunluk ve basınç kavramlarından yararlanarak kendi kartezyen dalgıcımızı tasarlıyoruz.

Fizik

Metalik mavi renkli kelebekler, yanardöner renkli meyveler, altın rengi kabuğa sahip böcekler... Peki, bu renklerin hiçbirinin kaynağının boyalar ya da pigmentler olmadığını biliyor muydunuz? Öyleyse bu ışıl ışıl parıldayan renkler nasıl ortaya çıkıyor?

Fizik

ABD’de uzunluk ölçüsü olarak metre yerine yard, feet ve inç; kütle ölçüsü olarak kilogram yerine pound ve ons gibi metrik olmayan ölçü birimlerinin kullanılması dikkatinizi çekmiştir. Peki, ABD’de bu ölçü birimlerinin kullanılmasında Karayip korsanlarının da payı olduğunu biliyor muydunuz?

Fizik

Elektrik ve nükleer enerji santrallerinde soğutma amacıyla kullanılan suların büyük kısmı buharlaşarak atmosfere karışır. Massachusetts Teknoloji Enstitüsü’nde çalışan bir grup araştırmacı bu kayıp suları geri kazanmak için yeni bir yöntem geliştirdi.

Fizik

Mikroakışkan çipler, mikrolitre ve daha küçük hacimlerdeki akışkanların mikro ölçekteki (metrenin milyonda biri) kanallar içerisinde kontrol edilm

Fizik

Baryon grubu parçacıklar üç kuarktan oluşur. Uluslararası bir araştırma grubu, di-Omega olarak adlandırılan bir parçacığın doğada var olabileceğini ileri sürdü. Baryon türü iki omega parçacığının bir araya gelmesiyle oluşan di-Omegaların Avrupa ve Japonya’daki parçacık hızlandırıcılarda üretilebileceği düşünülüyor.