Skip to content Skip to navigation

Yapay Gökkuşağı

Doç. Dr. Kemal Yürümezoğlu
11/11/2015 - 15:57

Bu etkinlikte yapay bir gökkuşağı oluşturmaya çalışıyoruz. Deneyin adımlarını izleyerek, siz de gerçeğine benzeyen yapay bir gökkuşağı oluşturabilir, tıpkı bilim tarihinde olduğu gibi beyaz ışığı oluşturan ana (kırmızı, mavi ve yeşil) renkleri ve bunların karışımlarından oluşan renkleri keşfedebilirsiniz.

Bilmekte fayda var!

Aristoteles, gökkuşağının çembersel şeklini ve maddi bir varlık olmadığını açıklayan ilk kişidir. 1267 yılında Roger Bacon gökkuşağının, yanlış bir biçimde, yalnızca ışığın yağmur damlalarından yansımasıyla oluştuğunu varsaydı. Buna karşın, 1310 yılında Freibergli Theodoric (Dietrich) gökkuşağının, ışık ışınlarının yağmur damlalarından yansıması ve kırılması sonucunda oluştuğunu doğru olarak belirledi. 1637 yılında Descartes birincil ve ikincil gökkuşaklarının Güneş’in yükseklik açısına bağlı olarak göründükleri açıları, niceliksel olarak elde etmeyi başardı ve gökkuşağının yarıçapının tam değerini hesaplayabildi.

Gökkuşağı, gözlemlendiği yer neresi olursa olsun, her zaman çember şekline sahiptir. Bu olgudan şöyle bir sonuca ulaşabiliriz: Gökkuşağı maddi değildir, sadece ışıktan oluşur. Eğer gökkuşağı dokunulabilir bir cisim olsaydı, izlendiği noktaya göre görüntüsünün yerinin değişmesi gerekirdi. Yer değiştirdiğimizde artık aynı gökkuşağını görmediğimiz için onu asla yakalayamayız ya da dokunamayız. Her konumumuz için bir tane ve her zaman ön tarafından göreceğimiz şekilde sayısız gökkuşağı vardır. Renkli kemerin gösterisini hayranlıkla yanımda izleyen bir kişi, aslında benim gördüğümden başka bir gökkuşağı görür. Hatta gözlerimizin her birinin farklı bir gökkuşağı gördüğü de söylenebilir.

Gökkuşağı bir ışık tayfıdır. Işığın kaynağı Güneş olduğu için gördüğümüz tayf, beyaz güneş ışığının tayfıdır. Beyaz ışık aslında renklerin karışımıdır. Renklerin nasıl meydana geldiğini ilk olarak Newton keşfetmiştir. Newton 1660’larda, cam bir prizmanın güneş ışığını renklere ayrıştırdığını gördü. Bir prizmanın içinden geçen ışınlar kırılır. Fakat değişik renklerin kırılma açıları birbirinden farklıdır. Beyaz ışık içinde bulunan çeşitli renklerin prizmadan geçerken  birbirinden ayrılmasının nedeni budur. Newton, ikinci bir prizma aracılığı ile renkli ışınların kırılıp yeniden tek bir beyaz ışık şeridi oluşturabileceğini de gösteren ilk kişidir.

Gördüğümüzde hepimizde hayranlık uyandıran gökkuşağı, ışığın doğasının anlaşılmasında birçok bilim insanına ilham kaynağı olmuştur.

Nelere ihtiyacımız var?

·      1 adet tepegöz (projeksiyon kolu çıkarılarak kullanılması daha uygun olacaktır)

·      6-7 litre su

·      1 adet cam/pleksiglas malzemeden yapılmış akvaryum (taban alanı tepegözün camının boyutunda olmalı)

·      2 adet A4 kâğıt

Ne yapıyoruz?

A4 kâğıtlardan birini tepegözün üzerine koyarak tepegözün ışığının akvaryumun alt kısmına ulaşmasını engelleyelim.

Suyu akvaryuma boşaltalım ve akvaryumu tepegözün üzerine yerleştirelim.

Diğer A4 kâğıdı ikiye katlayalım ve tepegözün üzerinde çok az açıklık kalacak şekilde görseldeki gibi yerleştirelim. A4 kâğıtlar tepegözden gelen ışığın çok az kısmının akvaryuma ulaşmasını sağlar. Bu açıklığın artırılıp azaltılması oluşan gökkuşağının kalınlığını değiştirir.

Düzeneğimizi hazırladık, şimdi tepegözü çalıştıralım. Tepegöz lambası ışık verdiğinde görsellerdeki gibi birbirinden güzel gökkuşakları oluşturabiliriz.

          

       

 

 

Kaynaklar:

  • Thuan, T., X., Işığın Kalbine Yolculuk, Çeviri: Aslı Genç, Yapı Kredi Yayınları, İstanbul, 2010.
  • Topdemir, H., Işığın Öyküsü, TÜBİTAK Popüler Bilim Yayınları, Ankara, 2007.
  • Işık, H. ve Yürümezoğlu, K., “Two simple activities to bring rainbows into the classroom”, The Physics Teacher, s. 38-39, 2012.

İlgili İçerikler

Fizik

Elektrik telleriyle taşınan yüksek akım hem insanlar hem de hayvanlar için hayli tehlikelidir. Peki, elektrik tellerine konan kuşlar bu durumdan neden zarar görmez? 

Fizik

CERN araştırmacılarının geliştirdiği mıknatıs teknolojisi, kanser tedavisinde kullanılan hadron terapi yönteminin uygulanmasında karşılaşılan sorunların çözümüne katkılar sağlayabilir.

Fizik

Bu etkinliğimizde maliyeti uygun atık malzemeler kullanarak sıvıların basıncı nasıl ilettiğini gösteren bir düzenek tasarlayacağız.

Fizik

Tasarla ve Yap köşesinin bu etkinliğinde maliyeti uygun atık malzemeler kullanarak esneklik potansiyel enerjisi ve kinetik enerjinin (hareket enerjisinin) birbirine dönüştüğü farklı bir düzenek tasarlayacağız.

Fizik

Boğaziçi Üniversitesi Elektroteknoloji Kulübü ve IEEE Öğrenci Kolu’nun düzenlediği Boğaziçi Enerji Zirvesi, 4 Kasım’da Albert Long Hall Kültür Merkezi’nde düzenlenecek.

Fizik

Nanobilim ve yoğun madde fiziği alanında yaptığı çalışmalar nedeniyle 2016 TÜBİTAK Bilim Ödülü’ne layık görülen Prof. Dr. Oğuz Gülseren ile araştırmaları üzerine bir söyleşi gerçekleştirdik.

Fizik

Lazerle bilgi aktarımının önündeki en önemli engel bulutlar. Cenova Üniversitesi’nden bir grup araştırmacı, lazerle iletişimin önündeki sorunları bulutları delerek aşmaya çalışıyor.

Fizik

4006-TÜBİTAK Bilim Fuarları Destekleme Programı başvuruları 22 Ekim - 22 Kasım 2018 tarihleri arasında gerçekleştirilecek.

Fizik

Arthur Ashkin optik cımbızların icadı, Gérard Mourou ve Donna Strickland ise yüksek yoğunluklu yüksek enerjili lazer atımlarının üretilmesine imkân veren bir yöntem geliştirmeleri sebebiyle Nobel Fizik Ödülü'ne layık görüldü.

Fizik

Deneyler köşesinin bu etkinliğinde evde ya da okulda kolayca bulabileceğiniz malzemelerle yüzey gerilimi etkisiyle yüzen kâğıttan bir balık tasarlıyoruz.